Program: Master of Science Program in Applied Mathematics

Degree: Master of Science (Applied Mathematics)

Study Plan:

1) Research Program (Scheme A 1)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
1	103799 M.Sc. Thesis	3	103691 Seminar I	1	103799 M.Sc. Thesis	9
ear			103799 M.Sc. Thesis	9		
Y	Total	3	Total	10	Total	9
5	103791 Seminar II	1	103799 M.Sc. Thesis	9	103799 M.Sc. Thesis	6
ear	103799 M.Sc. Thesis	9				
Ā	Total	10	Total	9	Total	6

2) Regular Program (Scheme A 2)

Year		Cr	Second Trimester	Cr	Third Trimester	Cr
	103611 Applied Linear Algebra	4	103633 Principles of Differential	4	103XXX Elective	4
-			Equations			
ear	103625 Applied Analysis	4	103691 Seminar 1	1	103799 M.Sc. Thesis	3
Y			103XXX Elective	4		
	Total	8	Total	9	Total	7
	103XXX Elective	4	103XXX Elective	4	103799 M.Sc. Thesis	4
ır 2	103791 Seminar II	1	103799 M.Sc. Thesis	4		
Yea	103799 M.Sc. Thesis	4				
	Total	9	Total	8	Total	4

Program: Master of Science Program in Applied Mathematics

Degree: Master of Science (Applied Mathematics)

Course Description:

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Core Cou	rse				•
103611	Applied Linear Algebra	4(4-0-12)	None	Systems of linear equations, matrix algebra, determinants, vector spaces, basis, linear independence and dimension, linear transformations, inner product spaces, orthogonal projections, eigenvalues and eigenvectors, similarity, diagonalization of matrices, applications.	 express a system of linear equations in matrix form and solve by Gaussian elimination perform matrix operations, row operations and find echelon forms to determine whether a square matrix is invertible explain the properties of the determinant and compute the determinant of a matrix determine whether a set of vectors is linearly independent or is a basis of a vector space find the column space, row space, and null space of a matrix find the range and kernel of a linear transformation find the matrix of a linear transformation with respect to a given basis apply the Gram-Schmidt process to find an orthonormal basis find the eigenvalues and eigenvectors of a given matrix diagonalize a self-adjoint and an orthogonal matrix apply the course contents to solving systems of linear ODEs and least-square problems.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103625 Applied Analy	vsis 4(4-0-12)	None	Sequences and series of real numbers, continuity, differentiability, integrability, sequences and series of functions, power series, norms and metrics, continuity and differentiation in Euclidean space, inverse function and implicit function theorems, Taylor's theorem.	 explain and apply definitions and common theorems related with convergence of sequences and series, continuity of functions, derivatives and the Riemann integral explain the difference between pointwise convergence and uniform convergence, and apply related theorems to continuity, derivatives and integrals determine convergence of series of functions and of power series explain the mathematical concepts of derivative and differentiability in Euclidean space, compute the various derivatives and apply the chain rule explain and apply the Mean Value Theorem and Taylor's Theorem of functions of one and several variables solve small-sized theoretical problems related with the course contents by using mathematical reasoning.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103633	Principles of Differential Equations	3(3-0-6)	None	Linear differential equations, systems of linear equations, existence and uniqueness of solutions, the Laplace transform, Sturm- Liouville theory, Fourier series and transforms, boundary-value problems.	 solve linear homogeneous and non- homogenous ordinary differential equations of all orders solve systems of linear first ordinary differential equations describe existence and uniqueness theorems for solutions to linear ordinary differential equations solve linear ordinary differential equations by the Laplace transform method solve boundary value problems involving partial differential equations over bounded and unbounded domains using the method of separation of variables.
Seminar (Courses			•	
103691	Seminar 1	1(1-0-9)	None	Introduction to mathematical research methodology processes including literature search, literature review, individual study, and discussion with emphasis on communication skills through oral presentation and academic writing.	 study a mathematical paper in depth and independently up to the level of comprehension perform literature research and review of related articles give a presentation related with the contents of a paper in a mathematically correct, structured and understandable way answer and discuss mathematical questions related with their presentation to an audience of peers.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103791	Seminar 2	1(1-0-9)	None	Discussion and presentation of problems of interest in mathematics or related areas, presentation of topics or research problems from the student's thesis work, together with development of presentation skills at academic conferences.	 study a mathematics-related research paper in depth and independently up to the level of comprehension perform literature research and review of related articles give a presentation related with the contents of a research paper in a mathematically correct, structured and understandable way use technological tools such as PowerPoint to enhance mathematical presentations answer and discuss critical questions related with their presentation to an audience of peers in the English language.
Elective C		4(4.0.12)			
103612	Discrete Mathematics	4(4-0-12)	Consent of the School	Discrete structures, coding theory, applications of combinatorics, block designs, Latin squares and their applications, applications of graph theory	 explain discrete structures explain coding theory, encryption and decryption explain applications of combinatorics in real life explain block designs, Latin square and their applications in scheduling explain the applications of graph theory.
103716	Selected Topics in Algebra	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of algebra.	
103717	Selected Topics in History and Philosophy of Mathematics	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of history and philosophy of mathematics.	
103718	Selected Topics in Number Theory	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of number theory.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103719	Selected Topics in Combinatorics	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of combinatorics.	
Analysis	Courses				
103621	Functional Analysis	4(4-0-12)	Consent of the School	Normed linear spaces, Banach spaces, bounded linear operators, dual spaces, inner product spaces, Hilbert space bases, Riesz representation theorem, self-adjoint, normal and unitary operators, Hahn- Banach theorems, uniform boundedness principle, open mapping theorem, closed graph theorem, reflexive spaces, weak-and weak*-convergence.	 explain fundamental concepts, properties and theorems of general normed linear spaces explain fundamental concepts and properties and theorems of bounded linear operators on a normed linear space explain fundamental concepts, properties and theorems of general Hilbert spaces and the bounded linear operators on them state and explain the fundamental theorems of functional analysis, including the Hahn-Banach theorem, uniform boundedness principle, open mapping theorem and closed graph theorem provide examples and counterexamples relating to the major theorems in the course solve theoretical and practical problems related with all of the course contents by using correct mathematical reasoning and notation.

Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
103622 Measure Theory	Self stud.) 4(4-0-12)	Consent of the School		 explain fundamental concepts and the main theorems related with measures, including sigma-algebras, measurable spaces and measurable functions describe the Lebesgue integral and its properties, including the main relevant theorems, explain the difference between Riemann and Lebesgue integral describe the construction of the -spaces and their properties, including the relevant theorems describe the connection between Borel measures on the line and distribution functions provide examples and counterexamples relating to the major theorems in the course solve theoretical and practical problems related with all of the course contents by using correct mathematical reasoning and notation.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103623 Fourier Series and Transforms	4(4-0-12)	Consent of the School	Pointwise and <i>L</i> ^{<i>P</i>} -convergence of Fourier series, summability methods, convolution and approximate identities, the group structure of the compact circle group and the group of real numbers as related to Fourier series and transforms, convergence and summability of Fourier transforms, the Plancherel theorem, distribution spaces, Fourier transform and convolution of distributions, discrete Fourier transform.	 compute the Fourier series and Fourier transforms of some simple functions describe the properties of the Fourier transform as a linear operator between function spaces state the fundamental theorems related with the Fourier transform describe conditions on existence and convergence of the inverse Fourier transform describe the space of tempered distributions, its properties, and the Fourier transform on it explain the concepts of the discrete Fourier transform, and express them in matrix form. solve theoretical and practical problems related with the course contents by using correct mathematical reasoning and notation.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103624	Probability and Random Process	4(4-0-12)	103622 Measure Theory, or consent of the School	Graduate introduction to probability theory by including topics on: probability spaces, random variables, distributions, conditional expectation, law of large numbers, central limit theorem, stochastic processes, filtrations, Poisson random measures, Brownian motion and martingales.	 explain the concept of probability space explain the concept of random variable and classify the types of the random variables explain the concept and calculate conditional probability state the law of large numbers and central limit theorem explain the concept of stochastic processes and filtrations explain the concept and the main properties of Brownian motion including martingales.
103721	Stochastic Analysis	4(4-0-12)	103622 Measure Theory, or consent of the School	Construction of stochastic processes, martingale and stopping time, Brownian motion, stochastic integration with respect to Brownian motion, Girsanov's theorem, local time of Brownian motion, Markov property for Ito diffusions, stochastic differential equations, stochastic control.	 explain the concept of construction of stochastic processes explain the concept of martingale, stopping time and Brownian motion explain the method of stochastic integration with respect to Brownian motion state the Girsanov theorem explain the Markov property for Ito diffusions explain the concept of stochastic differential equations and stochastic control.
103729	Selected Topics in Analysis	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of analysis.	
103828	Advanced Topics in Functional Analysis	4(4-0-12)	Consent of the School	Advanced content according to students' interests, requirements and current trends in the field of functional analysis.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103829	Advanced Topics in	4(4-0-12)	Consent of the School	Advanced content according to students'	
	Analysis			interests, requirements and current trends in the field of analysis.	
Differenti	al Equations Course				
103631	Advanced Ordinary	4(4-0-12)	Consent of the School	First-order differential equations, initial	1. solve linear and fractional first-order
	Differential			value problems, existence, uniqueness and	ordinary differential equations
	Equations			continuity of solutions, the contraction	2. find domains where functions satisfy
				principle, existence and uniqueness	Lipschitz conditions
				theorems, continuity of a solution with	3. apply existence and uniqueness theorems
				respect to parameters, non-extendable	to normal first-order systems of ordinary
				solution, dynamical systems, the	differential equations
				perturbation equation, systems of linear	4. analyze properties of solutions of initial
				equations, periodic systems of linear	value problems such as dependence on
				ordinary differential equations, linear	parameters and extension of solutions
				equations of m-th order, stability theory.	5. apply stability analysis to linear and
					quasilinear systems of ordinary differential
					equations.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103632 Principles of Partial Differential Equations	4(4-0-12)	Consent of the School	elliptic equations, maximum principles, harmonic functions, solution of the Dirichlet problem on a ball, subharmonic functions, Ascoli-Arzela theorem, theorem of existence of solutions to a Dirichlet problem, properties of parabolic equations, Dirichlet and Neumann problems.	 use the method of characteristics for a solving a first-order partial differential equation with a single unknown function construct appropriate conditions on the surface where a solution has a discontinuity find characteristics of a system of partial differential equations and conditions on them formulate a non-characteristic initial value problem for a system of quasilinear partial differential equations find domains of uniqueness of a solution of initial value problems for a hyperbolic linear system of first-order equations use weak and strong maximum principles for analysis of an elliptic second- order PDE formulate and analyze Dirichlet and von- Neumann problems.

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)	1		1 0
103731	Group Analysis of Differential Equations	4(4-0-12)	Consent of the School	Group of scale transformations, self-similar solutions, one-parameter local Lie groups of transformations, invariants and invariant manifolds of a group, prolongation of a Lie group, Lie algebra of operators, optimal system of subalgebras, equivalence transformations, group classification of differential equations, multi-parameter groups, invariant and partially invariant solutions of PDEs, Lie-Backlund symmetries, contact transformations of finite order, symmetry and conservation laws, Noether's theorem.	Lie algebras: vector space of generators and classification of Lie algebras
	Selected Topics in Differential Equations	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of differential equations.	
103839	Advanced Topics in Differential Equations	4(4-0-12)	Consent of the School	Advanced content according to students' interests, requirements and current trends in the field of differential equations.	
Financial	Mathematics Course				
103641	Time Series	4(4-0-12)	Consent of the School	Statistics background for forecasting,	1. explain the concepts and methods of
1050-1	Analysis and			regression analysis and forecasting,	simple and multiple regression
	Forcecasting			exponential smoothing methods, ARIMA	2. explain and compute the forecasts using
	2 store as this			models, transfer functions and intervention	the exponential smoothing method
				models.	3. explain and compute the forecasts using
					the ARIMA models
					4. explain the concept of transfer function and intervention models.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103642	Statistical Inference	4(4-0-12)	Consent of the School	Families of distributions; desired properties of statistics and of estimators; point estimation and methods of estimation; some statistical theorems, lower bound of unbiased estimator; interval estimation and concept of hypothesis testing, Neymann – Pearson lemma, most power and uniformly most powerful test	distributions 2. explain the desired properties of statistic and of estimator
103643	Operations Research	4(4-0-12)	Consent of the School	Linear programming, transportation models, dynamic programming, inventory models and queueing models.	 explain the concept of linear programming formulate and analyze linear programming problems build and solve transportation models explain the concept of dynamic programming formulate and analyze problems with inventory models formulate and analyze problems with queueing models.

	Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
102741	Mathematics of	Self stud.) $4(4, 0, 12)$	Concent of the School	Introduction to arbitrage based missing of	1 available the concents of arbitrance and right
103741	Mathematics of Financial Derivatives	4(4-0-12)	Consent of the School	Introduction to arbitrage-based pricing of derivative securities, including the topics on arbitrage, risk-neutral valuation, the log- normal hypothesis, binomial trees, the Black-Scholes formula and applications, the Black-Scholes partial differential equation, American options, one-factor interest rate models, swaps, caps, floors, and other interest-based derivatives, credit, risk and credit derivatives.	hypothesis and binomial trees 3. state the formula of the Black-Scholes formula and apply it 4. explain the concept of the Black-Scholes partial differential equation
103743	Continuous Models in Finance	4(4-0-12)	Financial Derivatives,	A second course in arbitrage-based pricing of derivative securities. The Black-Scholes model and its generalizations: equivalent martingale measures, the martingale representation theorem, the market price of risk, applications including change of numeraire and the analysis of quantos. Interest rate models: the Heath-Jarrow- Morton approach and its relation to short- rate models. The volatility smile/skew and approaches to accounting for it: underlyings with jumps, local volatility models, and stochastic volatility models.	 explain the concept of the Black-Scholes model and its generalizations explain the concept of the equivalent martingale measures and the martingale representation theorem explain the concept of the market price of risk, applications including change of numeraire and the analysis of quantos explain the concept of interest rate models: the Heath-Jarrow-Morton approach and its relation to short-rate models explain the concept of the volatility smile/skew and approaches to accounting for it: underlyings with jumps, local volatility models, and stochastic volatility models.
103748	Selected Topics in Probability	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of probability.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103749	Selected Topics in Statistics	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of statistics.	
103848	Advanced Topics in Mathematics of Finance	4(4-0-12)	Consent of the School	Advanced content according to students' interests, requirements and current trends in the field of mathematics of finance.	
Numerica	l Analysis and Comp	uter	•		
103651	Numerical Linear Algebra	4(4-0-12)	Consent of the School	Analysis and computational aspects of linear algebra and matrices by focusing on matrix factorization, systems of linear equations and iterative methods, least squares problem, eigenvalue problems.	 explain fundamentals of floating point operations: finite precision matrix computation, floating point number models, round off analysis explain and work with fundamental concepts of linear algebra: vector-matrix operations, partitioning of a matrix, banded matrix, vector and matrix norms apply direct methods for solving linear systems of algebraic equations: Gauss elimination method, singular value decomposition, LU-factorization apply methods of factorization: Cholesky factorization, sweep and LU factorization for tridiagonal systems, Householder reflection apply iterative methods: Jacoby and Gauss-Seidel methods, SOR-methods.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103652	Computer Tools for Mathematical Research	4(4-0-12)	Consent of the School	system and networking, electronic resources for mathematical research, mathematical document preparation, computer programming, symbolic	 perform online literature search prepare mathematical documents using the LaTeX typesetting system use symbolic mathematical software for symbolic and numerical computations, graphing and animation write a computer program for numerical computation and graphing with the help of standard numerical and graphic libraries execute common commands on a Unix/Linux terminal on the command line.
103653	Numerical Methods for Solving Partial Differential Equations	4(4-0-12)	Consent of the School	boundary element method, numerical solution to some boundary value-problems.	 show understanding of the role of numerical methods in general science and engineering contexts show understanding of the main concept of some conventional numerical methods such as finite difference, finite element and boundary element methods for the solution of differential equations demonstrate the procedure of applying various numerical methods to selected PDEs numerically find solutions to some boundary vale-problems identify the advantages and disadvantages of the various numerical methods under different contexts.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103654	Finite Element Method	4(4-0-12)	Consent of the School	Basic concepts of finite element methods, formulation of finite element methods by direct methods, formulation of finite element methods by weighted residual method, element interpolation functions and numerical integration over elements, applications to some basic PDEs.	 show understanding of the concept and significance of the finite element method (FEM) show understanding of direct and formal (basic energy and weighted residual) methods for deriving finite element equations formulate the system of linear equations resulted from the construction of the method, perform numerical integration over elements numerically apply the FEM to some selected forms of PDEs in 2 dimensions.
103655	Applied Numerical Analysis	4(4-0-12)	Consent of the School	Error analysis, solutions of systems of linear equations, solutions of nonlinear equations, interpolations, least square approximation, numerical differentiation and integration, numerical solutions of some ordinary and partial differential equations.	 state the definitions of error types with examples perform, both numerically and analytically, processes of finding solutions to nonlinear equations, and systems of linear equations compute some interpolation problems, and least square approximation demonstrate the process of numerically approximating differentiation and integration apply some numerical methods for solving given problems of ODEs or PDEs.

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
102(5(C 11 /	Self stud.)			1 ' 11 1 ' 1 1'
103656	Collocation	4(4-0-12)	Consent of the School	Linear systems of equations and solving	1. numerically solve some simple linear
	Meshless Method			methods, data interpolation in 1 dimension,	
				scattered data interpolation using Lagrange	2. show understanding of the concepts and
				polynomials, radial basis function, data	importance of interpolation methods of dat
				interpolation using radial basis function,	3. compute interpolation of given data
				approximation of derivatives using radial	using Lagrange polynomials
				basis function, applications to ODE and	4. show understanding of the behavior and
				PDEs, further important factors for	properties of radial basis functions
				considerations with the collocation method.	5. perform interpolation using radial basis
					functions
					6. approximate the values of derivatives of
					functions using the concept of collocation
					with radial basis functions
					7. apply the collocation method with radial
					basis functions to some differential
					equations
					8. show understanding of the advantages
					and disadvantages of the methods.
					8
103758	Selected Topics in	4(4-0-12)	Consent of the School	Content according to students' interests,	
	Numerical Analysis			requirements and current trends in the field	
				of numerical analysis.	
103858	Advanced Topics in	4(4-0-12)	Consent of the School	Advanced content according to students'	
	Numerical Analysis			interests, requirements and current trends in	
				the field of numerical analysis.	
Iathema	tical Modelling Cours	se			

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103761	Continuum Mechanics	4(4-0-12)	Consent of the School	Analysis of stress and deformation at a point and the derivation of the fundamental equations by applying the basic laws of conservation of mass, energy, and momentum and those of thermodynamics; development of relationships (constitutive laws) between stress, strain, and strain rate; basic equations governing the behavior of any continuum and applications to solids and fluids.	 operate with tensor coordinates apply tensor calculus, such as covariant derivatives of first and second orders, and their representations in various coordinate systems use curvilinear coordinate systems, in particular, cylindrical and spherical coordinate systems formulate conservation laws of used in continuum mechanics apply elements of mathematical thermodynamics derive mathematical models from the main principles of continuum mechanics.
103762	Classical Models of Continuum Mechanics	4(4-0-12)	103761 Continuum Mechanics, or consent of the School	This is a continuing course from Continuum Mechanics (103761). Topics include: liquid and gas, particular models, dissipative processes, deformation of solids, and linear elasticity theory.	 explain fundamentals of the gas dynamics equations: integral conservation laws and their differential forms apply the integral form of conservation laws for constructing Rankine-Hugoniot conditions; explain Riemann waves and Prandtl- Meyer solutions explain and work with self-similar solutions of one-dimensional gas dynamics equations for constructing exact solutions of decay of arbitrary discontinuity problems explain fundamentals of linear elasticity theory.

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
103763	Mathematical Principles of Fluid Mechanics	4(4-0-12)	103761 Continuum Mechanics, or consent of the School	Equations of motion, Stokes' axioms, Euler equations, energy equation, entropy, enthalpy, and temperature, ideal incompressible fluid, ideal inviscid and viscid fluid dynamics equations, compressible Navier-Stokes equations.	 explain fundamentals of fluid mechanics: Stokes' axioms and derivation of the fluid dynamics equations explain concepts of inviscid fluid dynamics: Euler equations and their properties explain viscid incompressible fluid dynamics equations (Navier-Stokes equations) construct particular solutions (Couette flow, Poiseuille flow) and their applications apply a priori estimates to the Navier- Stokes equations.
103768	Selected Topics in Signal Processing	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of signal processing.	
103868	Advanced Topics in Signal Processing	4(4-0-12)	Consent of the School	Advanced content according to students' interests, requirements and current trends in the field of signal processing.	
Insurance	Course				
	Life Insurance Mathematics	4(4-0-12)	Consent of the School	Basic concepts of life insurance: life annuities, benefit premiums, benefit reserves. Stochastic models for life insurance mathematics: Markov models, stochastic processes for interest rates and demography, cash flows and reserves, cover capital and Thiele's differential equation, Hattendorff's theorem, and unit- link policies.	 explain the concept of life insurance explain and compute Life Annuities, benefit premiums and benefit reserves explain the stochastic models for life insurance, Markov models, stochastic processes for interest rates and demography explain and compute the cash flows and reserves, cover capital and Thiele's differential equation explain Hattendorff's theorem and unit- link policies.
Other Ma	thematics Course			·	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103787	Selected Topics in Geometry	4(4-0-12)	Consent of the School	Content according to students' interests, requirements and current trends in the field of geometry.	
103788	Selected Topics in Mathematics in Modern Technology	4(4-0-12)	Consent of the School	This course covers topics in the development and application of modern technology. Contents is according to students' interests and requirements and the current trends in research and development relating mathematics and modern technology.	
103789	Selected Topics in Applied Mathematics	4(4-0-12)	Consent of the School	This course covers topics in the field of applied mathematics. Content is according to students' interests, requirements and current trends in research and development of applied mathematics.	
103888	Advanced Topics in Mathematics in Modern Technology	4(4-0-12)	Consent of the School	This course covers advanced topics in the development and application of modern technology. Contents is according to students' interests and requirements and the current trends in research and development relating mathematics and modern technology.	
103889	Advanced Topics in Applied Mathematics	4(4-0-12)	Consent of the School	This course covers advanced topics in the field of applied mathematics. Content is according to students' interests, requirements and current trends in research and development of applied mathematics.	
Thesis Co	ourses				

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
103799 M.Sc. Thesis		Consent of the School	Quality thesis research, indicating skills of independent discovery of new knowledge.	 prepare a research proposal on a mathematical topic review scientific research literature conduct in-depth research on a topic in mathematics up to the current frontier in the field, write a thesis in the English language which presents the details and results of their research work in logical, complete and clear manner communicate the results of their research work in the English language to an audience of specialists in the field through an oral presentation correctly answer questions related to the field of research and their own research work to an audience of specialists in the field in an oral presentation.
Elective Courses from Other S	chools			
204646 Data Management Technology	3(3-0-6)	None	Concepts and theories in data management; database architecture; relational database; relational database model; logical database design with normalization; physical database design; database applications in information work; languages in data query and management; transaction management; data security; modern data management such as Big Data and NoSQL.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
204647	Data Security	3(3-0-6)	None	Concepts of data security; problems caused by human and systems: computer crime and ethics; data vulnerability; security management and access control; technologies and tools for data security; computer network control, intrusion prevention, biometrics control; cryptography: encryption and decryption, private keys and public keys, digital signature, etc.; legal and ethical issues in data security, trends of data security and its applications.	
204648	Data Analytics	3(3-0-6)	None	Principles of data analysis; data warehouse; online analytical processing (OLAP); knowledge discovery in database; data mining; processes and techniques of data classification; processes and techniques of data clustering; processes of association rule discovery; data mining tools and technologies; data mining evaluation; related research in data analytics.	
204903	Selected Topics in Artificial Intelligence	3(3-0-6)	None	Principles of artificial intelligence, Its scope, history and techniques; knowledge representation; memory structures; reasoning mechanisms, probabilistic reasoning and searching techniques; games; planning; artificial intelligence-related research: machines learning; evolutionary computation; natural language processing; introduction to fuzzy logic; expert systems.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
204908	Selected Topics in High Performance Computing	3(3-0-6)	None	Concept and related research in high performance computing: High performance computing architecture; virtualization, grid and cloud technologies; MPI programming; MPI/IO programming; OpenMP programming; Multi-thread programming; designing a parallel program; performance modeling; GPU programming; distributed programming; development and debugging tools.	
205501	Entrepreneurship and Innovation	2(2-0-4)	None	Study of entrepreneurship, innovation and technology business, open innovation, attitudes and motivation of innovative entrepreneurs and social entrepreneurs, characteristics of successful entrepreneurs, new venture process, business model generation and business plan, business Frost & Sullivan feasibility and problems of new ventures.	
205502	Opportunity and Feasibility Analysis	2(2-0-4)	None	Identify potential opportunities, trend and market analysis, technology roadmap and forecasting, opportunity assessment, develop a business concept and vision, customer's insight and customer validation, and feasibility analysis.	
205503	Intellectual Property Strategies	2(2-0-4)	None	Concepts and principles of intellectual property management, intellectual property from research and development, patent searching, intellectual property laws and methods of intellectual property protection, intellectual property valuation and method in creating return on intellectual properties.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205506	Business Models and Strategies for New Venture	3(3-0-6)	None	Business model and strategic management concept, business environmental analysis, business lifecycles, analyzing existing business models, developing a business model for a new startup venture, and testing business model building block, formulating strategies for new venture, and internationalization strategies.	
205507	Entrepreneurial Marketing	3(3-0-6)	None	Marketing for new products and new markets, market opportunity analysis and evaluation, market segmentation strategies, value proposition design, marketing strategies and marketing plan, the use of internet in marketing, new product launch, branding and brand management, and marketing metrics.	
205508	Entrepreneurial Finance	3(3-0-6)	None	Principles of entrepreneurship, financing for entrepreneurial processes from start-up to harvesting, cost structure and financing need analysis, revenue model analysis, financing from money and capital markets, analysis and evaluation of financing sources, and cash flow analysis.	
205509	Supply Chain for New Venture	2(2-0-4)	None	Introduction to logistics and supply chain for new venture, demand management, resource planning, material flow, procurement and inventory, transportation systems, warehouses, distribution systems, reverse logistics, logistics cost, and outsourcing.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205510	Venture Capital and Private Equity Investing	2(2-0-4)	None	Principles and methods of fund raising and business value, business decision making regarding risk and return of investment, venture capital and private equity investing, social impact investors, deal structure evaluation and negotiation, value creation and exit strategies.	
205511	Legal Aspects of Entrepreneurship	2(2-0-4)	None	Introduction to laws, person and property, juristic acts, contract, obligation, wrongful acts, sale, hire of property, hire purchase, surety ship, pledge, mortgage, bills and cheques, partnership, limited company, shares, stock exchange, employment laws, tax laws, electronic commerce and unfair contract terms.	